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Abstract The new Accreditation Council for Graduate
Medical Education (ACGME) duty-hour standards for resi-
dents and fellows went into effect in 2011. These regulations
were designed to reduce fatigue-related medical errors and
improve patient safety. The new shift restrictions, however,
have led to more frequent transitions in patient care
(handoffs), resulting in greater opportunity for communica-
tion breakdowns between caregivers, which correlate with
medical errors and adverse events. Recent research has
focused on improving the quality of these transitions
through standardization of the handoff protocols; however,
no attention has been given to reducing the number of
transitions in patient care. This research leverages integer
programming methods to design a work shift schedule for
trainees that minimizes patient handoffs while complying
with all ACGME duty-hour standards, providing required

coverage, and maintaining physician quality of life. In a case
study of redesigning the trainees’ schedule for a Mayo
Clinic Medical Intensive Care Unit (MICU), we show that
the number of patient handoffs can be reduced by 23 % and
still meet all required and most desired scheduling con-
straints. Furthermore, a 48 % reduction in handoffs could
be achieved if only the minimum required rules are satisfied.

Keywords Patient handoffs . Scheduling . Integer
programming . ACGME duty-hour standards . Shift design .

Shift assignment

1 Introduction and background

In November 1999, the U.S. Institute of Medicine (IOM)
issued a report on medical errors estimating that nearly
100,000 patients die each year as a result of medical errors
and another 15 million are harmed [1]. Root cause analysis
of reported sentinel events from 1994 to 2004 revealed that
two-thirds of these errors were due to communication fail-
ures [2]. According to Dr. Lucien Leape, the number of
deaths from medical errors in hospitals is equivalent to the
death toll from three jumbo jet crashes every 2 days [3]. In
fact, more people die as a result of medical errors than from
motor vehicle accidents, breast cancer, or AIDS. Recent
reports continue to support the initial findings from IOM
[4] and connect fatigue-related medical errors with resi-
dents’ duty hours [5].

In September 2010, the Accreditation Council for Grad-
uate Medical Education (ACGME) enacted new duty-hour
regulations for residents and fellows [6] that limited weekly
work hours, length of duty periods, off time between shifts,
and frequency of consecutive working days and nights.
These stricter duty-hour requirements went into effect on
July 1, 2011 [7]. The goal was to reduce fatigue-related
medical errors and improve patient safety by limiting
residents/fellows (trainees) work hours. However, the more
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restrictive shifts have resulted in a significant increase in
patient handoffs and communication failures [8–13]. Patient
handoff is defined as “the process of transferring primary
authority and responsibility for providing clinical care to a
patient from one departing caregiver to one oncoming care-
giver” [14]. Some other terms that have commonly been used
for handoff in the literature are handover, sign-out, turnover,
transition of care, transfer of care and shift change transfer. It
is worth noting that the working shifts of both residents and
fellows must comply with the ACGME duty hour regulations.
For ease of reference, we use the term “trainees” to refer to
both residents and fellows in the rest of the paper. We also
refer to postgraduate year 2 (PGY-2) and above residents and
all fellows as “senior trainees”.

Several studies have correlated increased patient handoffs
with more medical errors caused by communication break-
downs and therefore worse patient outcomes [15–25]. It is
believed that 20 %–30 % of information conveyed during
patient handoffs is not documented in the medical record
[15, 26]. Figure 1 depicts the connection between the new
ACGME duty-hour regulations and medical errors.

Several studies have focused on the communication as-
pects of handoffs and have provided recommendations to
achieve high quality handoffs [8, 27–37]. For example, Kemp
et al. [37] presented a methodology for conducting safe and
effective sign-outs in a surgical service. Clark et al. [38]
designed a sign-out template to standardize the handoff pro-
cess in a general surgery residency program. Other studies
have focused on the overall handoff process. For instance,
Abraham et al. [39] proposed a clinician-centered approach
that captures the entire clinician workflow prior to, during, and
after handoff communication. Most of these studies have
employed interviews, surveys, and observations to understand
handoff failures and provide suggestions to enhance handoff
fidelity.

While a high-quality, structured handoff process is impor-
tant, decreasing number of patient handoffs is an additional
and fundamental way to reduce opportunities for medical
errors caused by communication breakdowns, supporting saf-
er and more efficient patient care. The newACGME duty-hour
standards themselves specifically emphasize the importance of
reducing handoffs (section VI.B.1. of [7]):

“Programs must design clinical assignments to mini-
mize the number of transitions in patient care.”

Borman et al. [40] recently surveyed surgery residents
and identified that resident perceptions of causes of medical
errors suggest that system changes are more likely to en-
hance patient safety than further hour limits. This research
provides mathematical methods for effecting such system
change, by redesigning schedules to reduce the number of
patient handoffs, hence reducing the opportunity for com-
munication error.

While recent research has focused on improving the
quality of communication during the handoff process
(i.e. improving box 6 in Fig. 1) to reduce medical errors
caused by communication breakdowns, to the best of our
knowledge, no prior work leverages physician scheduling to
reduce the quantity of handoffs (i.e. improving box 5 in
Fig. 1). This research contributes to the handoff literature by
providing an Integer Programming (IP) approach to design
trainees’ schedules in a patient-centered manner that mini-
mizes number of handoffs while respecting ACGME duty-
hour standards.

The methodology we develop is highly generalizable
and, while the proof of concept is developed for an
Intensive Care Unit (ICU), our approach can be applied
to many different care units in hospitals, including dif-
ferent intensive care unit types (e.g. Medical ICU, Sur-
gical ICU, Pediatric ICU, Critical Care Unit, etc.), the
emergency department, and general floor care (internal
medicine or surgery). This approach can also be
employed for different provider levels, e.g. attending
physicians, fellows, residents, nurses, etc.

Mathematical optimization techniques have been
widely used to solve the physician and nurse scheduling
problems in a provider-centered manner [41–44]. In the
“physician scheduling problem”, given a set of doctors,
a set of shifts and a planning period, one seeks to find
fair schedules for all physicians [45]. In the nurse
scheduling problem, the cost of salaries should also be
minimized.

Several studies have employed integer programming to
formulate and solve the physician and nurse scheduling

Fig. 1 Connection between ACGME standards and medical errors—the net effect is uncertain
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problems [46–50]. These studies provide mathematical
models to assign healthcare providers to pre-determined
fixed shifts (i.e. shift assignment models).

Gascon et al. [46] studied the flying squad nurse
scheduling problem. A multi-objective integer program-
ming problem with binary variables was employed to
find a feasible schedule satisfying most of the con-
straints. The paper combined the sequential and the
weighted method to obtain the best nurse schedule for
minimizing the deviation measures in soft constraints.
Bard and Purnomo [47] developed an integer program-
ming model to produce a revised schedule for regular
and pool nurses to efficiently use them in the event of
surge in demand for nursing services. The objective is
to achieve sufficient coverage with the minimum cost of
revising nurses’ schedules. Beaulieu et al. [48]
addressed the problem of physician scheduling. This
paper employed integer programming to make a sched-
ule for physicians in the emergency room of a major
hospital in Montreal, Canada. The model was able to
generate a better schedule with smaller deviations from
desired metrics in much shorter amount of time than the
current method being used by hospital staff. Sherali et
al. [49] proposed mixed-integer programming models to
address the resident scheduling problem concerned with
prescribing work-nights for residents. Heuristic solution
approaches were developed to solve the problem under
different scenarios. Cohn et al. [50] also combined IP-
based techniques with user expertise and heuristic ap-
proaches to construct high-quality schedules for resi-
dents in the psychiatry program at Boston University
School of Medicine based on their individual preferences.

Our IP-based shift “design and assignment”model differs
in that it simultaneously (1) finds the best times for starting
and ending the shifts to minimize the number of patient
handoffs (this is the shift design part), and (2) assigns
physicians to the shifts such that all ACGME duty-hour
regulations are satisfied, required coverage is achieved,
and livability rules are met (this is the shift assignment part).

The shift design concept brings a new perspective to the
problem of how best to incorporate the ACGME rules and
provides a systematic, model-driven method for designing
physicians’ schedules compared to the conventional ap-
proach of selecting between either two 12-h shifts or three
8-h shifts per day. It further benefits patients by minimizing
error-contributing handoffs while maintaining physicians’
quality of life.

The rest of the paper proceeds as follows. In Section 2, we
present the general model for designing the work shift sched-
ule for healthcare providers. In Section 3, we provide a proof
of concept by applying the model in a case study in the
Medical Intensive Care Unit (MICU) at Saint Marys Hospital
using historical data to demonstrate the benefits of our

methodology. Section 4 provides suggestions for future work
and section 5 presents the conclusions from this work.

2 Model development

In this section we present model assumptions, sets, param-
eters, variables, constraints and objective function. The
parametric model in this section is based on the ICU setting
for scheduling trainees at the Mayo Clinic; however, the
same model (perhaps with slight modification) could be
used for other hospital care units.

2.1 Assumptions

Because of the IP framework and also to ensure tractable and
practical solutions, it is necessary to divide each day into
discrete time blocks and to assume that shift change can
happen only at the start/end of these time blocks. For example,
if a day is divided evenly into 6 time blocks, each block would
be 4 h and shift changes can occur only at times 0, 4, 8, 12, 16
and 20. In other words, each physician can either work or not
work in a full time block. We also approximate the number of
patients handed off in each shift change based on historical
data on ICU patient census by time of day and day of week.

2.2 Sets and parameters

We use the following sets in our model.

I set of trainees
J set of days within the planning horizon
T set of weeks within the planning horizon
K set of time blocks within a day
Kn set of time blocks corresponding to night shift
Kr set of time blocks that end during rounding time

interval
Kinc set of time blocks that end during inconvenient time

interval for shift change (usually considered as late
night and early morning).

The main model parameters are listed below.

NbF number of trainees (fellows or residents)
NbD number of days within the planning horizon
NbW number of weeks within the planning horizon
NbB number of time blocks within a day
ShL maximum shift length allowed in hours
cjk approximate number of patient handoffs incurred by

a shift change at the end of time block k in day j,
calculated based on the average number of patients
in the ICU at the time of shift change

djk minimum number of trainees required to be in the
hospital at time block k of day j.

Provider shift design with consideration of patient handoffs 3



We also use a few auxiliary parameters in our model
to simplify the notation. They are directly calculated
from the main parameters.

BL ¼ 24
NbB length of each time block in hours

BShL ¼ ShL
BL

� �
maximum number of consecutive time
blocks which do not exceed ShL hours

B10 ¼ 10=BLd e minimum number of consecutive time
blocks which exceed 10 h.

2.3 Decision variables

The following decision variables are used in the model.

xijk 1 if trainee i is assigned to time block k on day j, and
0 otherwise

yjk 1 if there is a shift change at the end of time block k on
day j, and 0 otherwise

zij 1 if trainee i is totally off-duty on day j, and
0 otherwise

wij 1 if trainee i works at night on day j, and 0 otherwise.

2.4 Constraints

The model constraints can be classified into three categories:
(1) required and (2) desirable constraints are associated with
mandatory and optional scheduling rules respectively, while
(3) linkage constraints enforce model dynamics.

2.4.1 Required constraints

Certain constraints are required by regulation or organization-
al policy. The first five of these constraints are required by
ACGME duty-hour regulations, while 6 and 7 are required by
organizational policy.

1. Duty periods of postgraduate year 1 (PGY-1) residents
must not exceed 16 h in duration; however, senior
trainees may be scheduled to a maximum of 24 h of
continuous duty. The following inequalities ensure that
trainees do not work shifts longer than ShL hours. ShL is
the maximum shift length allowed in hours so we use
this value as an upper bound for shift length.

PBShLþs

k¼s
xijk � ShL

BL 8i 2 I ; 8j 2 J ;

8s 2 1; . . . ; NbB� BShL
� �� �

;

ð1Þ

PNbB
k¼s

xijk þ
Ps� NbB�BShLð Þ
k¼1

xi;jþ1;k � ShL
BL 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g;

8s 2 NbB� BShL
� �þ1; . . . ;NbB

� �
:

ð2Þ

If ShL=24 (i.e. the maximum allowed shift length is
24 h), inequality (1) is not needed and only inequality (2)
is kept.

2. Weekly duty hours must not exceed 80 h:

P7t
j¼7ðt�1Þþ1

P
k2K

xijk � 80
BL 8i 2 I ; 8t 2 T :

ð3Þ
3. Trainees must have a minimum of 10 h free of duty

between scheduled duty periods:

xi;j;k � xi;j;kþ1 þ xi;j;kþsþ2 � 1 8i 2 I ; 8j 2 J ;

8k 2 1; . . . ;NbB� B10f g;
8s 2 0; . . . ;B10 � 2f g;

ð4Þ

xi;j;k � xi;j;kþ1 þ xi;j;kþsþ1 � 1 8i 2 I ; 8j 2 J ;
8k 2 fNbB� B10 þ 1; . . . ;

NbB � 1g;
8s 2 0; . . . ; NbB� 1ð Þ � kf g;

ð5Þ

xi;j;k � xi;j;kþ1 þ xi;jþ1;sþ1 � 1 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g;
8k 2 fNbB� B10 þ 1; . . . ;

NbB� 1g;
8s 2 0; . . . ; k � NbB� B10 þ 1ð Þf g;

ð6Þ

xi;j;NbB � xi;jþ1;1 þ xi;jþ1;sþ2 � 1 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g;
8s 2 0; . . . ;B10 � 2f g:

ð7Þ

If NbB≥3, inequalities (4) – (7) are required.
Otherwise, this rule is automatically satisfied by other
required constraints and the above inequalities are not
needed to make sure trainees will get at least 10 h off
between shifts.

4. Trainees must get at least 1 day off per 7-day period
(when averaged over 4 weeks):

P7 t�1ð Þþ28

j¼7 t�1ð Þþ1
zij � 4 8i 2 I ; 8t 2 1; . . . ;NbW � 3f g:

ð8Þ
5. Trainees must not be scheduled for more than 6 consec-

utive shifts of night duty (night float):

P6
s¼0

wi;jþs � 6 8i 2 I ; 8j 2 1; . . . ;NbD� 6f g:

ð9Þ
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6. The required coverage must be satisfied (coverage
constraint):

P
i2I

xijk � djk 8j 2 J ; 8k 2 K: ð10Þ

7. Shift change is not allowed during bedside multi-
disciplinary rounds because this would disrupt the rounding
process and impact the educational benefit to trainees:

yjk ¼ 0 8j 2 J ; 8k 2 Kr: ð11Þ

2.4.2 Linkage constraints

The following inequalities serve as linkage constraints to
connect x, y, z and w variables.

1. Inequalities (12) – (15) ensure that whenever there is a
shift change at the end of time block k on day j, variable
yjk is assigned value 1.

yjk � xijk � xi;j;kþ1 8i 2 I ; 8j 2 J ; 8k 2 1; . . . ;NbB� 1f g;
ð12Þ

yjk � xi;j;kþ1 � xijk 8i 2 I ; 8j 2 J ; 8k 2 1; . . . ;NbB� 1f g;
ð13Þ

yj;NbB � xi;j;NbB � xi;jþ1;1 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g;
ð14Þ

yj;NbB � xi;jþ1;1 � xi;j;NbB 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g:
ð15Þ

2. Inequality (16) ensures that whenever zij is 1, trainee i is
off-duty on day j.

P
k2K

xijk � NbB 1� zij
� � 8i 2 I ; 8j 2 J : ð16Þ

3. Inequalities (17) and (18) ensure that wij is 1 when
trainee i works at night on day j, and 0 otherwise.

xijk � wij 8i 2 I ; 8j 2 J ; 8k 2 Kn; ð17Þ

wij �
P
k2Kn

xijk 8i 2 I ; 8j 2 J : ð18Þ

2.4.3 Desired constraints

In addition to the required constraints, there are some other
characteristics for a schedule which are not required, but are

desirable to obtain more convenient and livable schedules.
These could include vacation requests, sleep hours, circadi-
an rhythm or other human factors issues. In this part, we
discuss the desired constraints in our model. These rules
have been developed through several meetings and discus-
sions with program directors, consultants, chief residents
and fellows at Mayo Clinic.

1. To maintain regular sleep hours for trainees, we
disallow shift changes at late night or early morning
(inconvenient times).

yjk ¼ 0 8j 2 J ; 8k 2 Kinc: ð19Þ
2. ACGME rules only require 1 day off per 7-day period

(when averaged over 4 weeks). However, working several
days in a row could cause fatigue, irritability and reduced
concentration for trainees. Hence, the desire is to provide
at least 1 day off per any 7-day period (without averag-
ing). This means that, trainees are permitted to work no
more than 6 days in a row.

P6
s¼0

zi;jþs � 1 8i 2 I ; 8j 2 1; . . . ;NbD� 6f g:

ð20Þ
3. Based on ACGME regulations, trainees are allowed to

work for up to six consecutive night shifts. Nevertheless,
it is believed that doing a lengthy run of night shifts might
be associated with extreme fatigue, insomnia, and sleep
deprivation. Hence, we limit the night float to a maximum
of four consecutive night shifts.

P4
s¼0

wi;jþs � 4 8i 2 I ; 8j 2 1; . . . ;NbD� 4f g:

ð21Þ
4. The minimum required off-time between scheduled duty

periods is considered as 10 h by ACGME. However,
switching to day time work after doing a run of night
shifts is hard for human brain. Preferably, trainees would
have at least one whole day off (in addition to the post-call
day) after doing a run of night shifts to better adjust their
sleep pattern.

The following inequality ensures that after each night
shift, either another night shift or a day off should be
assigned to trainees.

wij � wi;jþ1 � zi;jþ1 � 0 8i 2 I ; 8j 2 1; . . . ;NbD� 1f g:
ð22Þ

5. Although ACGME duty hour regulations allow a shift to
last up to 16 h for PGY-1 and 24 h for PGY-2 and above,
shifts longer than 12 h are believed to be associated with
fatigue, headaches, irritability and reduced concentration.

Provider shift design with consideration of patient handoffs 5



Hence, we limit the shift length to 12 h by setting the
value of ShL parameter to 12 in inequalities (1) and (2).

To summarize our discussion in this section, all the
“Required Constraints” (RCs) and “Desired Constraints”
(DCs) are listed in Table 1.

2.5 Objective function

The objective is to minimize the approximate number of patient
handoffs during the scheduling horizon, calculated based on the
average ICU patient census at the time of shift change. Figure 2
provides two examples of how the number of patient handoffs is
affected by the number of patients in the ICU. In Fig. 2a, there are
two shift changes (provider transfers) at 7 am/pm. At the 7 am
shift change there are two patients in ICU, so we incur two
handoffs, while at 7 pm there is one patient in ICU and we incur
one handoff. Figure 2b illustrates the same scenario, but with
only one shift change at noon, where 4 patients are handed off.
Clearly, minimizing number of patient handoffs is not equivalent
to minimizing number of shift changes. Furthermore, longer
shifts do not guarantee fewer handoffs as seen in the example
of Fig. 2 (which also illustrates how the number of handoffs is
calculated in our model). The challenge lies in designing a
schedule that complies with all required constraints (and prefer-

ablymost desired constraints) in away that fewer patients have to
be handed off. The objective function can be written as follows:

min
X
j2J

X
k2K

cjkyjk : ð23Þ

3 Case study

This section presents a detailed discussion of how our model
can be applied in a healthcare setting to help redesign
trainees’ work shifts to minimize the number of patient
handoffs. We applied our model to the Medical Intensive
Care Unit (MICU) at Saint Marys hospital in Rochester,
Minnesota operated by Mayo Clinic. The MICU at Saint
Marys hospital is a 24-bed unit. Our focus is on redesigning
the fellows’ shifts, as their service has the most impact on
patient outcomes. Similar analysis can be applied to other
provider levels (e.g., residents, attending consultants, etc.)
and other hospital units as well.

3.1 Assumptions

The detailed parameterization of the model for the case
study was obtained through several meetings with resi-

Table 1 Scheduling constraints:
required constraints (RC) and
desired constraints (DC)

Scheduling Constraints

RC1 Trainees must not work longer than ShL hours on a single shift.

RC2 Trainees must not work more than 80 h per week.

RC3 Trainees must get at least 10 h off-duty between shifts.

RC4 Trainees must get at least 1 day off per 7 days (averaged over 4 weeks).

RC5 Trainees must not be scheduled for more than six consecutive night shifts.

RC6 The required coverage must be satisfied.

RC7 Shift change is not allowed during bedside multi-disciplinary rounds.

DC1 Shift change is not allowed at late night or early morning (inconvenient times).

DC2 Trainees should not work more than 6 days in a row.

DC3 Trainees work no more than four night shifts in a row.

DC4 Trainees have at least 1 day off after a run of night shifts.

DC5 Shifts longer than 12 h are not allowed.

Fig. 2 Examples of how the
number of patient handoffs is
calculated in the performance
analysis model: (a) 2 shift
changes and 3 patient handoffs,
(b) 1 shift change and 4 patient
handoffs

6 P. Kazemian et al.



dency and fellowship program directors, chief residents
and fellows, as well as feedback from different medical
providers at Mayo Clinic.

For the case study, we consider a 4-week scheduling
horizon which starts on a Saturday and ends on a Friday
as trainees at Mayo Clinic rotate between different units
every 4 weeks. Two years of MICU admission and dis-
charge data were used to calculate the approximate MICU
census for different days of week and times of day.

Each day was divided into 12 time blocks. Hence, shift
changes can happen at any of times 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20 and 22 in military time format. One nice property
of the 2-h time block is that, for this case study, the resulting
schedule has a symmetric structure. The symmetric structure
of our proposed schedule makes it easy to remember and
much more appealing for implementation.

Based on ACGME rules, the maximum shift length is
16 h for postgraduate year 1 (PGY-1) residents and 24 h
for senior trainees. Because the 24-h shifts are believed
to cause extreme tiredness and sleep deprivation con-
tributing to more fatigue-related medical errors and poor
patient outcomes, we limit the maximum shift length to
16 h for fellows. Currently fellows work 12-h shifts in
the MICU. We start our analysis with a 16-h limit on
shift length, but will perform a sensitivity analysis on
shorter and longer shifts later.

Some constraints deal with night shifts (i.e. inequalities (9),
(17), (18) and (22)). In our study, we define night to be from
10:00 pm to 6:00 am. Hence, if a fellow is working at any time
in this interval, we assume he/she is on a night shift.

To provide 24/7 coverage, at least three fellows are re-
quired. This is because each fellow can work a maximum of
80 h per week and we want to provide 24*7=168h weekly
coverage. Hence, we need at least 168

80

� 	 ¼ 3 fellows.
For inequality (11), which ensures there is no shift

change during the bedside multi-disciplinary rounds, we
need to determine the set of time blocks that end during this
interval. Currently, the bedside rounds happen from 8:30 am
to 11:00 am in the MICU.

Finally, a shift change is not allowed at inconvenient
times (late night and early morning) through inequality
(19). In this case study, we assume any time after 10:00 pm
and before 4:00 am is inconvenient for a shift change.

3.2 Set and parameter values

Based on our previous discussion, model sets and pa-
rameters are assigned the following values.

Sets:
I={1, 2, 3},
J={1, 2,…, 28},
T={1, 2, 3, 4},

K={1, 2, …, 12},
Kn={1, 2, 3, 12},
Kr={5},
Kinc={1, 2, 12}.

Parameters:
NbF=3,
NbD=28,
NbW=4,
NbB=12,

ShL ¼ 12 if DC5 is included in the scenario under consideration
16 Otherwise



;

djk ¼ 1 8j 2 J ; 8k 2 K;

BL ¼ 24

NbB
¼ 2;

BShL ¼ ShL

BL

� �
¼ 8;

B10 ¼ 10=BLd e ¼ 5:

cjk is equal to the average MICU patient census at the end
of time block k in day j.

3.3 Data collection

We used 2 years of MICU admission and discharge data to
obtain patient census profiled by time of day and day of
week. A computer program was developed to extract the
required data from the dataset and to keep track of patient
admissions and discharges for each time block of every day.
Figure 3 shows the average MICU admission and discharge
patterns during the day. As seen in this graph, there are
almost no discharges at nights. Bedside rounds start at
8:30 am during which the discharge decisions are made by
the team of residents, fellows and consultants. Patient dis-
charges typically start around 9:00 am. The admission pro-
cess is smoother with a higher average during the daytime.
Figures 4 and 5 show the average MICU patient census
versus different times of day and days of week. Mornings
are more crowded than evenings since there is no discharge
from the MICU at nights and before the rounds start in the
morning. These results make sense intuitively and are in line

Provider shift design with consideration of patient handoffs 7



with expert opinion which supports our data collection.
Although the MICU census fluctuates from month to
month, the pattern for different times of day and differ-
ent days of week is similar. Since the census pattern is
what matters for our shift design study (rather than the
actual census numbers), we take the grand average
census over months of year and use these numbers to
approximate number of patient handoffs in our data-
driven numerical analysis.

3.4 Experimental scenarios

In this section, we solve the scheduling problem for differ-
ent combinations of constraints to determine their effect on
the objective function. The intent is to determine which
desired constraints have the most impact on the number of
patient handoffs.

As discussed in section 2.4, required constraints are those
constraints that must be enforced in order to obtain valid or

Fig. 3 MICU admissions and discharges

Fig. 4 Average MICU patient census vs. time of day

8 P. Kazemian et al.



feasible schedules. Desired constraints are not required to be
satisfied, but they make the resulting schedule more appeal-
ing. We perform our analysis by adding one or a combina-
tion of desired constraints to the model and study their
impact on the objective value (number of patient handoffs).
If a desired constraint results in a great increase in the
number of patient handoffs, loosening its bound or remov-
ing it will help avoid an increase in handoffs. This provides
insight into the relative cost in terms of handoffs of a desired
constraint.

There are 32 combinations of the five desired constraints.
Those include having no desired constraints satisfied
(1 case), having one desired constraint satisfied (5 cases),
and so on. We will show the approximate number of patient
handoffs for each case later in this section. First, we start
with two extreme cases.

Scenario A—only required constraints The first scenario we
investigate is the case in which only required constraints are
satisfied. The resulting schedule will provide a lower bound
on the minimum achievable number of handoffs. The num-
ber of patient handoffs from this case is used as the baseline
for our comparison. The solution yields 635 patient handoffs
over the 4-week scheduling horizon.

Scenario B—All required constraints and all desired
constraints The second scenario we study is the case in
which all required and desired constraints are satisfied. This
provides an upper bound on the number of patient handoffs.
Interestingly, the resulting schedule was the same as current
MICU schedule with 831 patients handed off during the 4-

week horizon. The cost of having all desired constraints
satisfied is a 31 % increase in the number of patient
handoffs.

Scenario C—All required constraints together with one
desired constraint The previous scenarios provide a lower
and an upper bound for the number of patient handoffs (635
and 831 respectively). In this scenario, we study the impact
of each desired constraint on the number of patient handoffs
by including them in the model individually. Scenarios C1,
C2, C3, C4 and C5 are related to the cases in which DC1,
DC2, DC3, DC4 and DC5 are added to the model respec-
tively. The results show that adding DC2 or DC4 does not
increase the number of patient handoffs, while adding DC1
or DC3 results in 641 patient handoffs (1 % increase). On
the other hand, adding DC5 (limiting shift length to 12 h)
results in 831 patient handoffs, the same result as the upper
bound.

Scenario D—All required constraints together with DC1-
DC4 The results of previous scenarios revealed that each of
these constraints individually does not significantly degrade
the objective function. Including all of them simultaneously
leads to a schedule with 641 patient handoffs on average
over the 4-week horizon. This is only 1 % greater than the
lower bound (Scenario A), which includes none of the
desired constraints.

Scenario E—All required constraints together with DC2
and DC4 In scenario C, we saw that adding DC2 or DC4
to the model one at a time would not increase the number of

Fig. 5 Average MICU patient census vs. day of week
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patient handoffs. In this scenario, we investigate the effect of
having both of them satisfied. The solution results in 641
handoffs, exactly the same as scenario D where DC1-DC4
are satisfied. Consequently, scenario E is dominated by
scenario D.

Table 2 summarizes the results in this section. It
shows all cases together with the scenarios we discussed
in this section, the number of patient handoffs for each
case, and whether each case is efficient or not. Those
cases that are not dominated by any other case are
efficient schedules.

As seen in Table 2, scenarios B, C2, C4 and D are
efficient schedules. However, from a practical standpoint,
scenario D is preferred to scenarios C2 and C4, since DC1 –
DC4 are satisfied with only 1 % increase in the number of
patient handoffs. Hence, from practical standpoint, only

scenarios B and D are efficient schedules. The only differ-
ence between these two schedules is the limit on shift length.
Figure 6 shows the resulting schedules corresponding to scenar-
ios B and D (12 h and 16 h shift length limit, respectively).

Fellows at the Mayo MICU are currently working 12-h
shifts with shift changes happening at 6 am and 6 pm. Our
analysis in this part showed that the current work shift
schedule for fellows at Mayo’s MICU is indeed optimal if
we want to maintain 12-h shifts; however, the 16-h shift
length of scenario D is very attractive due to the large
number of handoffs saved (190 or 23 % fewer).

3.5 Sensitivity analysis and discussion

In this section, we briefly review the main results from the
previous section and then provide further analysis of the
shift length constraint.

Table 2 Summary of results of
experimental scenarios Case # Scenario Desired Constraints Number of Patient Handoffs Dominated By Scenario

1 A – 635 (baseline) C2 & C4

2 C1 1 641 (+1 %) D

3 C2 2 635 (+0 %)

4 C3 3 641 (+1 %) D

5 C4 4 635 (+0 %)

6 C5 5 831 (+31 %) B

7 1, 2 ≥ 641 D

8 1, 3 ≥ 641 D

9 1, 4 ≥ 641 D

10 1, 5 ≥ 831 B

11 2, 3 ≥ 641 D

12 E 2, 4 641 (+1 %) D

13 2, 5 ≥ 831 B

14 3, 4 ≥ 641 D

15 3, 5 ≥ 831 B

16 4, 5 ≥ 831 B

17 1, 2, 3 ≥ 641 D

18 1, 2, 4 ≥ 641 D

19 1, 2, 5 ≥ 831 B

20 1, 3, 4 ≥ 641 D

21 1, 3, 5 ≥ 831 B

22 1, 4, 5 ≥ 831 B

23 2, 3, 4 ≥ 641 D

24 2, 3, 5 ≥ 831 B

25 2, 4, 5 ≥ 831 B

26 3, 4, 5 ≥ 831 B

27 D 1, 2, 3, 4 641 (+1 %)

28 1, 2, 3, 5 ≥ 831 B

29 1, 2, 4, 5 ≥ 831 B

30 1, 3, 4, 5 ≥ 831 B

31 2, 3, 4, 5 ≥ 831 B

32 B 1, 2, 3, 4, 5 831 (+31 %)
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The previous section showed that most of the desired
constraints can be accommodated without significantly in-
creasing the number of patient handoffs. Those constraints
include: no shift change at late night or early morning, at least
1 day off every 7 days, no more than four night shifts in a row
and a minimum 1 day off after a run of night shifts. The
desired constraint that restricts shift length to 12 h, however,
increases the number of patient handoffs by more than 30 %.

Based on ACGME duty-hour regulations, work shifts
of residents in PGY-1 must not exceed 16 h while
senior trainees (PGY-2 and above residents and all fel-
lows) may be scheduled for a maximum of 24 h of
continuous duty. To explore the effect of shift length,
we run the model for different shift lengths from 12 h

to 24 h (in 2-h increments). We keep all other required
and desired constraints active and only change the shift
length bound (ShL parameter). Figure 7 shows the
resulting change in number of patient handoffs.

As seen in Fig. 7, increasing shift length limit results in
fewer patient handoffs. The current 12-h shifts in Mayo
MICU cause an average of 831 patients to be handed off
per month. Should the shift length be extended to 16 h, this
will result in nearly a 23 % reduction in number of patient
handoffs per month. Increasing the shift length to its max-
imum allowed limit, i.e. 24 h, results in almost a 48 %
reduction in number of patient handoffs per month. On
one hand, shorter shifts correlate with more frequent
patient handoffs, which potentially results in more

Fig. 6 Resulting schedules with (a) 12 h per scenario B and (b) Scenario D with 16 h shift length limit. Each number and color refers to one of the
three fellows who is assigned to the corresponding time block

Fig. 7 Number of patient
handoffs for different shift
length limits
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medical errors due to communication breakdown and
loss of information during the handoff process. On the
other hand, longer shifts are associated with extreme
tiredness and sleep deprivation which can also contrib-
ute to fatigue-related medical errors.

A reasonable tradeoff between fatigue and handoffs
should be established to minimize medical errors and
achieve the best patient outcomes. However, to date there
is no solid methodology to quantify physicians’ fatigue and
the effect of fatigue on quality of care and patient outcomes.
The best we could do was to collect expert opinions. Several
program directors and physicians that we have interviewed
believe that 24-h shifts are acceptable and worth the benefit
of fewer patient handoffs. A majority of program directors,
chief residents and fellows believe 16-h shifts are very
reasonable and worth the benefit of the 20 %–25 % reduc-
tion in patient handoffs (compared to 12-h shifts). The 16-h
shift length limit is permitted by ACGME and could be
applied to different trainee levels (i.e. PGY-1 residents,
senior (PGY-2 and above) residents, and fellows). This
appears to provide a good tradeoff between the adverse
effects of physicians’ fatigue and the adverse effects of more
frequent patient handoffs.

One final point is the importance of maintaining fairness
and balance among the trainees’ schedules. While this is not

a mandated requirement, it is clearly important for imple-
mentation and trainee morale. Therefore, we added mea-
sures and associated constraints to ensure balance among
the schedules for average duty hours, number of night shifts,
and the number of days off. Figure 8 shows the resulting
equitable schedule and associated “fairness” values that
yields the same 641 patient handoffs (with the shift length
limit set at 16 h).

4 Future work

There are several directions for future research. First, it is
not currently known how much the extra weariness due
to longer shifts contributes to fatigue-related medical
errors. If physician fatigue and its effect on medical
errors can be quantified in a systematic way, it will help
in scientifically evaluating schedules that minimize the
number of patient handoffs. Second, the connection be-
tween ICU rounding time and patient census pattern
could be further investigated. In this study, we included
a required constraint to keep bedside rounds at the current
time to avoid the complex effect of rounding time on the
patient discharge process, which directly influences ICU
patient census.

Fig. 8 Equitable schedule with all required and desired constraints and 16-h shift length limits
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5 Conclusions

In this paper, we developed a new patient-centered model
for scheduling residents and fellows (trainees) to minimize
number of patient handoffs, which have been linked with
medical errors caused by communication breakdowns and
adverse events. While previous literature focuses on the
logistics of the handoff, we bring a new systems perspective
to this problem by designing schedules that minimize the
number of patients that are handed off, thereby reducing the
opportunity for serious error. Our integer programming
model designs work shifts such that all ACGME duty-hour
regulations are satisfied, required coverage is achieved,
livability rules are met, and patient handoffs are mini-
mized. The general form of our model presented in
Section 2 can be used by any healthcare operation that
wants to reduce patient handoffs and that has duty-hour
restrictions and similar livability constraints. Should the
size of the model render the problem intractable for
other healthcare units, heuristics approaches such as
the Tabu Search can be employed to solve the integer
program (see, for example, [51] and [52]).

In a case study of a Medical Intensive Care Unit
(MICU) at an academic medical center (the Mayo Clinic
in Rochester, Minnesota) we demonstrated how our model
could be applied to reduce the number of patient handoffs.
We found that most desired constraints (livability rules)
can be satisfied with a negligible increase in number of
patient handoffs. The desired constraint that had the larg-
est impact on handoffs was the shift length. By increasing
the shift length from 12 to 16 h it was possible to reduce
handoffs by 23 % relative to the current MICU schedule.
24-h shifts (the maximum allowable shift length) resulted
in a 48 % reduction in the number of patient handoffs. It
is worth noting that in the proposed schedule no new
trainees (fellow for the case study of Mayo MICU) need
to be added beyond the minimum number needed to
provide the required coverage specified by required con-
straint #6 (RC6), i.e. Eq. 10 (required coverage is 24/7 for
the case study). Therefore, in terms of financial costs, the
as-is schedule and the proposed schedules are exactly the
same.

Based on discussions with staff at Mayo Clinic, we
found that 16-h shifts provided a reasonable tradeoff
between medical errors due to trainee fatigue and med-
ical errors due to communication breakdowns as a result
of more frequent patient handoffs. The new shift design
approach discussed in this paper is under consideration
for implementation at Mayo Clinic. A shift assignment
approach based on the work discussed in this paper was
accepted by the practice and additional services are
considering the use of the general methodology to assist
in staff scheduling at Mayo Clinic.
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